Java 基础教程

Java 面向对象

Java 高级教程

Java 笔记

Java FAQ

original icon
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.knowledgedict.com/tutorial/java-ai.html

java ai


Java 对 AI 人工智能的支持主要体现在提供了丰富的开源框架和库。

开源框架/库

以下介绍几个常用的 Java AI 开源框架/库:

Deeplearning4j(DL4J)

一个用于深度学习的开源库,支持各种神经网络模型,如卷积神经网络(CNN)、循环神经网络(RNN)等。

maven 坐标如下:

<dependency>
  <groupId>org.deeplearning4j</groupId>
  <artifactId>deeplearning4j-core</artifactId>
  <version>1.0.0-beta3</version>
</dependency>

gradle 导入示例如下:

implementation 'org.deeplearning4j:deeplearning4j-core:1.0.0-beta3'

示例代码:

// 示例:创建一个简单的多层感知机
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder()
    .seed(123)
    .updater(new Nesterovs(0.1, 0.9))
    .list()
    .layer(0, new DenseLayer.Builder().nIn(numInputs).nOut(64)
        .activation(Activation.RELU)
        .weightInit(WeightInit.XAVIER)
        .build())
    .layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD)
        .activation(Activation.SOFTMAX)
        .weightInit(WeightInit.XAVIER)
        .nIn(64).nOut(numOutputs).build())
    .build();

MultiLayerNetwork model = new MultiLayerNetwork(conf);
model.init();

Weka

Waikato 环境用于知识分析的工具箱,是一个流行的机器学习库,提供各种分类、聚类、回归等算法的实现,如 SVM、KNN 等。

maven 坐标如下:

<dependency>
  <groupId>nz.ac.waikato.cms.weka</groupId>
  <artifactId>weka-dev</artifactId>
  <version>3.8.0</version>
</dependency>

gradle 导入示例如下:

implementation 'nz.ac.waikato.cms.weka:weka-dev:3.8.0'

示例代码 1:

// 示例:使用Weka加载数据集并应用决策树算法
DataSource source = new DataSource("path/to/your/dataset.arff");
Instances data = source.getDataSet();
data.setClassIndex(data.numAttributes() - 1);

J48 decisionTree = new J48();
decisionTree.buildClassifier(data);
System.out.println(decisionTree);

示例代码 2:

Instances data = ... //加载训练数据 

NaiveBayes classifier = new NaiveBayes(); 
classifier.buildClassifier(data);

Instance newInstance = ... //测试数据
double label = classifier.classifyInstance(newInstance);

Mallet

这是自然语言处理的 Java 库,内置了许多 NLP 算法,如主题模型、情感分析等。

maven 坐标如下:

<dependency>
  <groupId>cc.mallet</groupId>
  <artifactId>mallet</artifactId>
  <version>2.0.8</version>
</dependency>

gradle 导入示例如下:

implementation 'cc.mallet:mallet:2.0.8'

示例代码:

ArrayList<Pipe> pipes = new ArrayList<Pipe>();

pipes.add(new Input2CharSequence("UTF-8"));
pipes.add(new CharSequenceLowercase());
pipes.add(new CharSequence2TokenSequence());
pipes.add(new TokenSequenceRemoveStopwords());

Pipe pipeline = new SerialPipes(pipes);
ArrayList<Instance> instances = new ArrayList<Instance>();

Instance instance = new Instance(pipeline); 
instance.setData("This is some text");  
instances.add(instance);

Encog

一个用于神经网络、遗传算法和其他机器学习技术的 Java 库。

maven 坐标如下:

<dependency>
  <groupId>org.encog</groupId>
  <artifactId>encog-core</artifactId>
  <version>3.4.0</version>
</dependency>

gradle 导入示例如下:

implementation 'org.encog:encog-core:3.4.0'

示例代码:

MLDataSet trainingSet = new BasicMLDataSet(input, ideal);
RPropTrainer trainer = new RPropTrainer(network);
trainer.train(trainingSet);

Neuroph

除了神经网络,Neuroph 还支持其他类型的机器学习算法和集成学习。

maven 坐标如下:

<dependency>
  <groupId>org.neuroph</groupId>
  <artifactId>neuroph-core</artifactId>
  <version>2.92</version>
</dependency>

gradle 导入示例如下:

implementation 'org.neuroph:neuroph-core:2.92'

示例代码:

MultiLayerPerceptron neuralNet = new MultiLayerPerceptron(input, hidden, output);
NeuralNetworkTrainingSet trainingSet = new NeuralNetworkTrainingSet(input, ideal);  
BackPropagation neuralNetTrainer = new BackPropagation();
neuralNetTrainer.train(neuralNet, trainingSet);

XGBoost4J

一个在 Java 中常用的机器学习库,特别适用于梯度提升树算法。

maven 坐标如下:

<dependency>
    <groupId>ml.dmlc</groupId>
    <artifactId>xgboost4j</artifactId>
    <version>1.5.0</version> <!-- 替换为最新版本 -->
</dependency>

gradle 导入示例如下:

implementation 'ml.dmlc:xgboost4j:1.0.0'

示例代码:

DMatrix trainMat = new DMatrix(dataset[0]);
params.put("eta", 0.1);
params.put("max_depth", 3);

XGBoost model = new XGBoost(params);
model.setParam("nthread", Runtime.getRuntime().availableProcessors());
model.update(trainMat);

Smile

一个用于机器学习和数据挖掘的 Java 库,提供了多种分类、回归、聚类和降维算法。

maven 坐标如下:

<dependency>
  <groupId>com.github.haifengl</groupId>
  <artifactId>smile-core</artifactId>
  <version>1.5.3</version>
</dependency>

gradle 导入示例如下:

implementation 'com.github.haifengl:smile-core:1.5.3'

示例代码:

NaiveBayesClassifier model = new NaiveBayesClassifier(features, labels);
model.train();
int predicted = model.predict(testFeatures);

Oryx 2

一个用于实时大数据分析和机器学习的框架,支持协同过滤、分类等任务。

maven 坐标如下:

<dependency>
  <groupId>com.cloudera.oryx</groupId>
  <artifactId>oryx-app-common</artifactId>
  <version>2.0.5</version>
</dependency>

gradle 导入示例如下:

implementation 'com.cloudera.oryx:oryx-app-common:2.0.5'

示例代码:

InferenceModel model = InMemoryModelManager.read(modelFile);
String prediction = model.classify(input);

SiaNet

一个基于 DL4J 的深度学习库,提供了更简化的 API 来构建神经网络模型。

maven 坐标如下:

<dependency>
  <groupId>io.sia</groupId>
  <artifactId>sia-core</artifactId>
  <version>0.2.0</version>
</dependency>

gradle 导入示例如下:

implementation 'io.sia:sia-core:0.2.0'

示例代码:

NeuralNetConfiguration config = new NeuralNetConfiguration();
NeuralNet nn = new NeuralNet(config);
nn.train(trainingData, trainingLabels);
double[] outputs = nn.predict(inputData);

JNNet

一个用于神经网络建模的轻量级库,适合初学者和简单任务。

maven 坐标如下:

<dependency>
  <groupId>co.nubentos</groupId>
  <artifactId>jnnet</artifactId>
  <version>0.0.7</version>
</dependency>

gradle 导入示例如下:

implementation 'co.nubentos:jnnet:0.0.7'

示例代码:

JNNet nn = new JNNet();
nn.initialize(inputSize, hiddenSize, outputSize);  
nn.train(input, ideal);
double[] output = nn.run(input);

AI4J

一个包含多种人工智能算法的 Java 库,包括神经网络、遗传算法等。

maven 坐标如下:

<dependency>
  <groupId>org.apache.ai4j</groupId>
  <artifactId>org.apache.ai4j.libs</artifactId>
  <version>0.3.0</version>
</dependency>

gradle 导入示例如下:

implementation 'org.apache.ai4j:org.apache.ai4j.libs:0.3.0'

示例代码:

BackPropagationNetworkFactory<Matrix> factory = BackPropagationNetworkFactory.create();
NeuralNetwork<Matrix> neuralNetwork = factory.create(inputSize, hiddenSize, outputSize);

neuralNetwork.learn(trainingSet);  
Matrix output = neuralNetwork.compute(inputVector);

Apache Mahout

一个用于机器学习和数据挖掘的库,包括各种分类、聚类和推荐算法。

maven 坐标如下:

<dependency>
  <groupId>org.apache.mahout</groupId>
  <artifactId>mahout-mr</artifactId>
  <version>0.13.0</version>
</dependency>

gradle 导入示例如下:

implementation 'org.apache.mahout:mahout-mr:0.13.0'

示例代码:

Matrix userData = ...; // 用户数据  
Matrix itemData = ...; // 物品数据

UserSimilarity similarity = new PearsonCorrelationSimilarity(userData);
UserNeighborhood neighborhood = new ThresholdUserNeighborhood(0.1, similarity, userData);

UserBasedRecommender recommender = new GenericUserBasedRecommender(userData, itemData, neighborhood, similarity);

List<RecommendedItem> recommendations = recommender.recommend(12345, 10);

Spark ML

一个用于大规模数据处理的开源分布式计算框架 Apache Spark 中的机器学习库。

maven 坐标如下:

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-mllib_2.11</artifactId>
  <version>2.3.0</version>
</dependency>

gradle 导入示例如下:

implementation 'org.apache.spark:spark-mllib_2.11:2.3.0'

示例代码:

MultilayerPerceptronClassifier model = new MultilayerPerceptronClassifier()
  .setLayers(new int[]{3, 5, 4, 2}) 
  .setBlockSize(128)
  .setSeed(1234L)
  .setMaxIter(100);

DataFrame training = ...; // 加载训练数据 
DataFrame test = ...;

model.fit(training);

DataFrame result = model.transform(test);
Java 没有内置的字符串类型,而是在标准 Java 类库中提供了一个预定义类,很自然地叫做 String。每个用双引号括起来的字符串都是 ...
在Java中使用Redis主要涉及使用Redis客户端库来与Redis服务器进行通信。步骤流程:添加Maven依赖:编写Java代码示例:# ...
Java 是一种广泛使用的计算机编程语言,拥有跨平台、面向对象、泛型编程的特性,广泛应用于企业级 Web 应用开发和移动应用开发。 ...
数组是一种数据结构,用来存储同一类型值的集合。通过一个整型下标可以访问数组中的每一个值。例如,如果 a 是一个整型数组,a[i] 就是数组中 ...
环境相关MacOS如何彻底卸载各版本的jdk(java开发环境)语法相关java中trycatchfinally语句中同时包含return时 ...