pandas 教程

Pandas 数据结构

Pandas 基本操作

Pandas API

original icon
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://www.knowledgedict.com/tutorial/pandas-panel.html

Pandas面板(Panel)


面板(Panel)是3D 容器的数据。面板数据一词来源于计量经济学,部分源于名称:Pandas - pan(el)-da(ta)-s

3轴(axis)这个名称旨在给出描述涉及面板数据的操作的一些语义。它们是 -

  • items - axis 0,每个项目对应于内部包含的数据帧(DataFrame)。
  • major_axis - axis 1,它是每个数据帧(DataFrame)的索引(行)。
  • minor_axis - axis 2,它是每个数据帧(DataFrame)的列。

1. pandas.Panel()

可以使用以下构造函数创建面板 -

pandas.Panel(data, items, major_axis, minor_axis, dtype, copy)

构造函数的参数如下 -

参数 描述
data 数据采取各种形式,如:ndarrayseriesmaplistsdictconstant和另一个数据帧(DataFrame)
items axis=0
major_axis axis=1
minor_axis axis=2
dtype 每列的数据类型
copy 复制数据,默认 - false

2. 创建面板

可以使用多种方式创建面板 -

  • 从 ndarrays 创建
  • 从 DataFrames 的dict 创建

2.1 从3D ndarray 创建

# creating an empty panel
import pandas as pd
import numpy as np

data = np.random.rand(2,4,5)
p = pd.Panel(data)
print p

执行上面示例代码,得到以下结果 -

<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 4

注意 - 观察空面板和上面板的尺寸大小,所有对象都不同。

2.2 从 DataFrame 对象的 dict 创建面板

#creating an empty panel
import pandas as pd
import numpy as np

data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)), 
        'Item2' : pd.DataFrame(np.random.randn(4, 2))}
p = pd.Panel(data)
print p

执行上面示例代码,得到以下结果 -

<class 'pandas.core.panel.Panel'>
Dimensions: 2 (items) x 4 (major_axis) x 5 (minor_axis)
Items axis: 0 to 1
Major_axis axis: 0 to 3
Minor_axis axis: 0 to 4

2.3 创建一个空面板

可以使用Panel的构造函数创建一个空面板,如下所示:

#creating an empty panel
import pandas as pd
p = pd.Panel()
print p

执行上面示例代码,得到以下结果 -

<class 'pandas.core.panel.Panel'>
Dimensions: 0 (items) x 0 (major_axis) x 0 (minor_axis)
Items axis: None
Major_axis axis: None
Minor_axis axis: None

3. 从面板中选择数据

要从面板中选择数据,可以使用以下方式 -

  • Items
  • Major_axis
  • Minor_axis

使用 Items

# creating an empty panel
import pandas as pd
import numpy as np
data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)), 
        'Item2' : pd.DataFrame(np.random.randn(4, 2))}
p = pd.Panel(data)
print p['Item1']

执行上面示例代码,得到以下结果 -

            0          1          2
0    0.488224  -0.128637   0.930817
1    0.417497   0.896681   0.576657
2   -2.775266   0.571668   0.290082
3   -0.400538  -0.144234   1.110535

上面示例有两个数据项,这里只检索item1。结果是具有4行和3列的数据帧(DataFrame),它们是Major_axisMinor_axis维。

使用 major_axis

可以使用panel.major_axis(index)方法访问数据。参考以下示例代码 -

# creating an empty panel
import pandas as pd
import numpy as np
data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)), 
        'Item2' : pd.DataFrame(np.random.randn(4, 2))}
p = pd.Panel(data)
print p.major_xs(1)

执行上面示例代码,得到以下结果 -

      Item1       Item2
0   0.417497    0.748412
1   0.896681   -0.557322
2   0.576657       NaN

使用 minor_axis

可以使用panel.minor_axis(index)方法访问数据。参考以下示例代码 -

# creating an empty panel
import pandas as pd
import numpy as np
data = {'Item1' : pd.DataFrame(np.random.randn(4, 3)), 
        'Item2' : pd.DataFrame(np.random.randn(4, 2))}
p = pd.Panel(data)
print p.minor_xs(1)

执行上面示例代码,得到以下结果 -

       Item1       Item2
0   -0.128637   -1.047032
1    0.896681   -0.557322
2    0.571668    0.431953
3   -0.144234    1.302466

注意 - 观察尺寸大不的变化。


任何分组(groupby)操作都涉及原始对象的以下操作之一。它们是 - ...
时间差(Timedelta)是时间上的差异,以不同的单位来表示。例如:日,小时,分钟,秒。它们可以是正值,也可以是负值。 可以使用各种参数创 ...
在 es 使用中,开发者想配置自身业务中沉淀的同义词(synonyms)表,并基于该同义词库配置包含其的分析器(analyzer),主要分为 ...
Elasticsearch索引的配置项主要分为静态配置属性和动态配置属性,静态配置属性是索引创建后不能修改,而动态配置属性则可以随时修改。r ...
Pandas对象之间的基本迭代的行为取决于类型。当迭代一个系列时,它被视为数组式,基本迭代产生这些值。其他数据结构,如:DataFrame和 ...